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Realistic Analytical Polyhedral MRI Phantoms
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Purpose: Analytical phantoms have closed form Fourier trans-

form expressions and are used to simulate MRI acquisitions.
Existing three-dimensional (3D) analytical phantoms are unable
to accurately model shapes of biomedical interest. The goal of

this study was to demonstrate that polyhedral analytical phan-
toms have closed form Fourier transform expressions and can

accurately represent 3D biomedical shapes.
Methods: The Fourier transform of a polyhedron was implemented
and its accuracy in representing faceted and smooth surfaces was

characterized. Realistic anthropomorphic polyhedral brain and
torso phantoms were constructed and their use in simulated 3D

and two-dimensional (2D) MRI acquisitions was described.
Results: Using polyhedra, the Fourier transform of faceted
shapes can be computed to within machine precision. Smooth

surfaces can be approximated with increasing accuracy by
increasing the number of facets in the polyhedron; the addi-

tional accumulated numerical imprecision of the Fourier trans-
form of polyhedra with many faces remained small. Simulations
of 3D and 2D brain and 2D torso cine acquisitions produced

realistic reconstructions free of high frequency edge aliasing
compared with equivalent voxelized/rasterized phantoms.
Conclusion: Analytical polyhedral phantoms are easy to con-

struct and can accurately simulate shapes of biomedical inter-
est. Magn Reson Med 76:663–678, 2016. VC 2015 Wiley
Periodicals, Inc.
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INTRODUCTION

In MRI acquisition and reconstruction development, it is
useful to be able to quickly generate Fourier measure-
ments of test objects. Physical test objects are referred to
as physical MRI phantoms, or simply MRI phantoms.

Realistic physical phantoms can be time consuming,
cumbersome, and expensive to construct (1). In contrast,
digital phantoms, sometimes referred to as computerized

phantoms (2), are computer models. Digital phantoms
are convenient because test data can be generated from
simulated acquisitions, but they currently have a number
of shortcomings that limit their use.

Digital phantoms can be divided into analytical or raster-
ized phantoms. Analytical phantoms are based on functions
in the image domain that also have closed form Fourier
transform (FT) expressions. These expressions allow the FT

to be computed accurately at arbitrary spatial frequencies.
An ideal analytical phantom for MRI development should
accurately approximate the borders as well as the intensity
profiles of shapes comprising biomedically relevant objects.
However, existing three-dimensional (3D) analytical phan-
toms are limited in the types of boundaries and intensity
variations they can model. For instance, Koay’s implemen-
tation of the 3D Shepp–Logan head phantom (3,4) is con-

structed using ellipsoids with uniform intensity. Although
Guerquin-Kern et al. (5) recently provided a closed form FT
for 2D B-spline analytical phantoms with simulated coil
sensitivity profiles and Zhu et al. (6) used polygonal models
to create an analytical vocal tract phantom, these phantoms
are confined to 2D simulations.

In contrast to analytical phantoms, rasterized or voxel-
ized phantoms (2,7–9) are based on voxels. They can be

generated by discretely sampling continuous functions in
the image domain but can also include simulations that
evaluate the Bloch equation on a per-voxel basis (10,11).
Unlike the exact FT of analytical phantoms, rasterized
phantoms can only provide an approximation of the FT of
the original function by computing the discrete Fourier
transform (DFT) of the image domain samples. The approx-

imation accuracy is bounded by the rasterized phantom
resolution. It can be made more accurate by oversampling
(ie, increasing the image domain sampling density), which
in turn reduces high frequency aliasing in k-space. How-
ever, because the computational cost of the DFT increases
with matrix size, and keeping in mind that that all image
space samples are required to compute a single k-space
sample, motion simulations can be computationally inten-

sive. Separate image domain matrices are required to cap-
ture different motion states. Simulating motion between
k-space samples requires computing the DFT of the matrix
corresponding to the state of the object at sample time.
Because the object may be moving continuously, the object
may only spend a few k-space samples between state
changes. Thus, the DFT of many matrices must be com-

puted to simulate even a few k-space samples, which can
be time consuming. Additionally, non-Cartesian k-space
trajectories are less straightforward to simulate because the
DFT produces k-space points on a Cartesian grid.
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Here we introduce 3D analytical phantoms constructed
using polyhedra with uniform intensities, which although
limited in their ability to model intensity variations, are able
to accurately model the boundaries of many biomedically rel-
evant shapes. A polyhedron is any closed surface comprised
of polygonal faces and is general enough to accurately
approximate the boundaries of many 3D objects. Addition-
ally, because closed triangular meshes are also polyhedra, an
analytical polyhedral phantom can be easily constructed
using existing 3D computer graphics modeling tools that
manipulate triangular meshes. Other 3D surface representa-
tions such as nonuniform rational B-splines (NURBS) can be
converted to triangular meshes, which can then be used in an
analytical polyhedral phantom.

We describe the theory and construction of analytical
polyhedral phantoms, expanding on previously published
work (12). First, the closed form FT expressions for poly-
hedra are reviewed. Next, we describe an implementation
of the FT of a polyhedron. We then evaluate the accuracy
of the FT computation for objects that can be exactly
described using a polyhedra (eg, a cube) and objects that
can only be approximated (eg, an ellipsoid). Finally, we
describe the construction of analytical polyhedral phan-
toms that accurately model a brain and a torso and dem-
onstrate their application in MRI simulations.

THEORY

We herein review the analytical expressions for the FT
of a polyhedron (13). A detailed derivation can be found
in the Appendix. Vector quantities are in bold, scalars in
plain typeface, and when both bold and plain typeface
versions of a symbol exist (eg, k and k), the plain type-
face represents the magnitude of the corresponding
vector.

FT of a Polyhedron

A polyhedron is comprised of F polygonal faces. The
boundary of the face f is composed of Ef vertices,
rðVf 1Þ � � � r

ðVfEf
Þ
, ordered in a counterclockwise fashion

when viewed with the face normal bN f pointing at the
observer. Lfe ¼ rðVf ðeþ1ÞÞ � rðVfeÞ is a vector oriented in the
direction of the eth edge, pointing from vertex rðVfeÞ to
rðVf ðeþ1ÞÞ with the same length as the edge. bt fe ¼ Lfe=Lfe is the
unit vector oriented in the direction of the eth edge. bnfe is a
unit vector normal to the eth edge and pointing outward
from the interior of the polygon. In addition, the first and
last vertices are connected, thus r

ðVf ðEf þ1ÞÞ ¼ rðVf 1Þ.
S3DðkÞ is the analytical expression for the FT of a uni-

tary intensity polyhedron rðrÞ at spatial frequency k and
is given in Equation [1]. If k ¼ 0 (ie, the DC offset), the
FT is the volume polyhedron V . At non-zero k-space fre-
quencies, S3DðkÞ is proportional to the sum of face con-
tributions S�f ðkÞ, where f 2 ½1;F �. When a face f is
normal to k (ie, its normal vector bN f is parallel to k, that
face contribution is proportional to the area of the face,
Pf modulated by a complex exponential whose argument
is the dot product of k and the first vertex in the face
rðVf 1Þ. Otherwise, when k 6¼ k bN f , the face contribution is
proportional to the sum of contributions from each edge
comprising the face. The contribution of edge e is pro-
portional to the product of the length of the edge Lfe, a
sinc and a complex exponential whose argument con-
tains rðCfeÞ, the midpoint of the edge. The number of
terms in the overall sum for S3DðkÞ and thus the compu-
tational cost is proportional to the total number of edges
in the polyhedron. Because the FT is linear, the expres-
sions for nonunitary intensity polyhedra can be obtained
by multiplying S3DðkÞ by the desired intensity. Figure 1
and Table 1 illustrate and define these quantities.

S3DðkÞ ¼
� 1

ð2pkÞ2
XF

f¼1

S�f ðkÞ; k 6¼ 0

V ; k ¼ 0

8>><>>:

S�f ðkÞ ¼

k � bN f

k2 � ðk � bN f Þ2
XEf

e¼1

Lfek � bnfe

sinðpk �bt feLfeÞ
pk �bt feLfe

exp
�
�2pik � rðCfeÞ

�
; k 6¼ k bN f

�2pik � bN f exp
�
�2pik � rðVf 1Þ

�
Pf ; k ¼ k bN f

8>>>><>>>>:
Pf ¼

1

2

���� bN f �
XEf

e¼1

frðVfeÞ � rðVfeþ1Þg
����:

[1]

V is the volume of the polyhedron (14), which is given

in terms of its vertices as

S3Dðk ¼ 0Þ ¼ V

¼ 1

6

�����XF

f¼1

ðrVf 1 � bN f Þ
���� bN f �

XEf

e¼1

rðVfeÞ � rðVfeþ1Þ

( )���������
[2]

METHODS

Implementation

We implemented the FT of a polyhedron in two forms.
First, a multithreaded Cþþ MATLAB (MathWorks,
Natick, Massachusetts, USA) plugin was created. Because
the face contributions are independent, they were com-
puted in parallel using the available CPU threads. This
strategy works well for motion simulations where the
geometry of a polyhedral phantom with many faces
changes every few k-space samples. Alternatively, if many
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k-space samples are needed for a single state of the object
(eg, in static simulations), an alternative efficient imple-
mentation can divide the computation among k-space
samples instead of faces. Unless stated otherwise, this
implementation was used for testing in this study. The
second implementation is comprised of a set of MATLAB
functions that take advantage of built-in parallelization
and required no additional external libraries. This imple-
mentation, apart from being platform-independent, is par-
allelized along both the faces and k-point dimensions,
using either vectorization or innate multithreading.

Multiple components comprising a polyhedral phan-
tom can be modeled using separate polyhedra, similar to
the multiple ellipsoids comprising the Shepp–Logan
phantom. The FT of the composite phantom is obtained
by computing the weighted sum of the individual FT of
all component polyhedra, where the weights are the
desired intensities of each component. Overlapping com-
ponents will cause summation of intensities in the image
domain.

Attention should be paid to the quality of polyhedra
comprising a phantom. Polyhedra with undetected surface
gaps, self-intersections, or incorrectly ordered vertices can
produce unexpected results in the computed FT. The
effect of a gap is proportional to its surface area. The gap
can be interpreted as a missing face. Because the magni-
tude of the missing face contribution is proportional to the
length of its edges, a larger gap has proportionately greater
effect. Self-intersections cause reversal of internal and
external regions, reversing the orientation of faces. The
reversed orientation introduces a negative sign into the
face contribution. As a result, a region of self-intersection
can have the complex phase of its intensity reversed. The
effect of a self-intersection is proportional to the volume of
the regions involved. Finally, vertices that comprise a face
are assumed to be ordered in a counterclockwise fashion
with the vector normal to the face pointing toward the
observer. Reverse ordering also reverses the vector normal
to the face, again inverting inner and external regions simi-
lar to self-intersections. Again, artifacts associated with
reverse ordering are proportional to the size of the faces
involved. Because these abnormalities affect the FT
expression in a continuous fashion, the threshold at which
they become noticeable will depend on machine numeri-
cal precision.

Validation

Accuracy

We compared the FT of a unit cube–shaped polyhedron
against the known gold standard FT of a unit cube. The

Table 1
Symbols

Symbol Definition

S Fourier Domain MR signal
k k-space vector

2D polygon 2 R2

E Total number of vertices or edges

e index of eth vertex or edge
Ve eth vertex, first and last vectors connected,i.e.

VEþ1 ¼ V1 and VE ¼ V0.
rðVeÞ position vector associated vertex Ve

Le Le ¼ rðVeþ1Þ � rðVeÞ, vector oriented in the direction

the eth edge, pointed from vertex Ve to Veþ1 with
the same length as the edgebte

bte ¼ Le=Le, unit vector oriented in the direction of

the eth edgebne is a unit vector normal to the eth edge and pointing

outward from the polygon
rðCeÞ rðCeÞ ¼ rðVeÞ þ bteLe=2, position vector of the mid-

point between vertices Ve and Veþ1

P Area of Polygon

3D polyhedron 2 R3

F total number of faces in the polyhedron
f index of fth facebN f outward normal of the fth face
Ef total number of edges or vertices of the fth face

Vfe eth vertex of fth face, first and last vectors con-
nected, i.e. Vf ;Efþ1 ¼ Vf1 and VfEf

¼ Vf0

rðVfeÞ position vector associated vertex Vfe

Lfe Lfe ¼ rðVf ;eþ1Þ � rðVfeÞ, vector oriented in the direction
the eth edge, pointed from vertex Vfe to Vf ;eþ1

with the same length as the edgebt fe
bt fe ¼ Lfe=Lfe, unit vector in the direction of the eth

edge of the fth facebnfe outward normal to the eth edge of the fth face and
is in the plane of the face

rðCfeÞ rðCfeÞ ¼ rðVfeÞ þ bt feLfe=2, position vector of the

midpoint between vertices Vfe and Vf ;eþ1

Pf Area of fth face

V Volume of Polyhedron

FIG. 1. Illustration of a polygon, a face of a polyhedron, and their associated parameters. (a) Unitary intensity 2D polygon comprised of
four vertices V1 � � �V4 oriented in a counterclockwise fashion. (b) Single triangular face of a polyhedron comprised of vertices Vf1 � � �Vf3.

The remaining parameters are described in Table 1.
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unit cube, rgs, has a closed form FT, Sgs, that is the prod-
uct of sincs:

rectðxÞ ¼

0; if jxj > 1

2

1

2
; if jxj ¼ 1

2

1; if jxj < 1

2

8>>>>>>>><>>>>>>>>:
;FðrectðxÞÞ ¼ sincðkÞ ¼ sinðpkÞ

pk

rgsðx; y ; zÞ ¼ rectðxÞ � rectðyÞ � rectðzÞ

SgsðkÞ ¼FðrgsÞ ¼WxWyWz � sincðWxkxÞ�

sincðWykyÞ � sincðWzkzÞ:
[3]

Here, Wx;Wy ;Wz define the length of the rect in the x,
y, and z directions, respectively, and kx ;ky ;kz are ele-
ments of the k vector. The lengths were set to unity
ðWx ¼Wy ¼Wz ¼ 1Þ, thus the function is a unit cube
with unitary intensity centered at the origin. The unit

cube can be exactly modeled using a triangular mesh,

thus the FT can also be computed with our implementa-

tion of the FT of a polyhedron. The unit cube–shaped

triangular mesh used in this validation had 12 triangular

faces, two triangles defining each of the six square faces

as illustrated in Figure 2. For the calculation of the FTs,

we used a field of view (FOV) of 2 corresponding to a k-

space sampling density of Dk ¼ 1=FOV ¼ 0:5 and a sam-

pling matrix of 64 � 64 � 64. These same parameters,

unless otherwise specified, were used for all validation

experiments.

Floating Point Precision

Edges are the basic unit in the computation of the FT of

a polyhedron. Polyhedra with many faces, and thus

many edges, are useful for modeling complex biomedi-

cally relevant geometry. We therefore assessed whether

the FT of a polyhedron accumulated prohibitively high

floating point precision errors as the number of edges

increased. The gold standard of the FT of a unit width

FIG. 2. Examples of triangular meshes with varying number of faces used to model a unit cube (a–c) and an ellipsoid (d–f). Unit cube–

shaped triangular meshes containing varying number of faces were used to validate the implementation of the FT of a polyhedron
against the gold standard of the FT of a 3D rect function. The magnified inset illustrates the small triangular faces comprising the mesh

in panel c. Triangular meshes with varying number of faces (d–f) were used to approximate the FT of an ellipsoid against the closed
form FT. The gray shadows show cross sections of the mesh in the x ¼ 0, y ¼ 0, and z ¼ 0 planes. The magnified inset for the 79,600
face mesh illustrates dense triangles in the surface mesh.
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3D rect was compared with the FT of a unit cube–

shaped polyhedra containing 12 to 98,304 triangular

faces or equivalently, 18 to 147,456 edges respectively

(number of edges ¼ 1.5� number of faces for triangular

meshes). Figure 2a–2c illustrates example meshes con-

taining 12, 6144, and 12,288 triangular faces or 18, 9216,

and 18,432 edges, respectively. Additionally, the cube

was shifted away from the origin by adding a random

value between �0.5 and 0.5 to one or more of the x, y,

and z components of the vertices, and the gold standard

k-space was multiplied by a corresponding linear phase.

Approximating Smooth Surfaces

To approximate smooth surfaces with a polyhedron, pro-

gressively smaller facets can be used until the desired

approximation accuracy is obtained. We quantified the

geometric approximation error incurred when modeling

a smooth surface using a polyhedron. We examined how

the error decreases when approximating an ideal ellip-

soid with a polyhedron with increasing number of faces.

We chose an ellipsoid because it is a smooth surface

with a known closed form FT (3). The ellipsoidal trian-

gular meshes were generated using MATLAB in two

steps. First points were generated on the surface of an

ellipse (using “ellipsoid”). Then, a triangular mesh was

generated from these points (using “convhull”). The

meshes contained between 180 and 79,600 faces or 270

and 119,400 edges, respectively. Figure 2d–2f illustrates

the meshes containing 180, 1740, and 79,600 faces.

Brain Phantom

3D MRI Simulation

Triangular meshes representing the outer and inner corti-

cal brain surfaces were generated using anatomical data.

The source data was a magnetization-prepared rapid gra-

dient echo MRI volume from the Open Access Series of

Imaging Studies (OASIS) dataset (15). The Topology Pre-

serving Tissue Classification of Magnetic Resonance

Brain Images (TOADS) algorithm (16) was used to seg-

ment the gray matter. The Cortical Reconstruction Using

Implicit Surface Evolution (CRUISE) algorithm (17) was

then applied to this segmentation to generate triangular

meshes corresponding to the outer and inner cortical

surfaces. The outer and inner cortical meshes contained

536,684 and 354,908 triangular faces, respectively, and

are illustrated in Figure 3a and 3b. The number of faces

was determined automatically by the TOADS and

CRUISE algorithms and was dependent on factors such

as the volume of the brain and the complexity of the

cortical surface. Although subcortical structures such as

ventricles were not included in this phantom, there are

no technical limitations that prohibit their inclusion.
We simulated a 3D MRI acquisition using these

meshes. The k-space matrix size was 128 � 128 � 128,

and the FOV in the right, anterior, and superior direc-

tions was 137.35, 170.15, and 117.20 mm, respectively.

The outer and inner cortical meshes were assigned inten-

sities of 74 and 38, respectively, producing (after summa-

tion due to overlap) intensities of 74 in the cortex and

112 in the subcortical regions. Finally, the volume was
reconstructed using a 3D IDFT.

2D MRI Simulation

We simulated a 2D MRI acquisition wherein a slice of
the 3D object is selectively excited before k-space is
acquired. To simulate ideal slice selection where an
infinitesimally thin slice of the brain is excited by a slice
selective radio-frequency pulse, a 2D plane perpendicular
to the slice selection axis, the z-axis, was intersected
with the meshes generating sets of 2D slice contours. The
location of the slice plane lies midway between the top
and bottom faces of the slab mesh in Figure 3a and 3b.
We used the Computational Geometry Algorithms Library
(CGAL) (18) to compute these intersections. CGAL is a
C/Cþþ library containing peer-validated, highly accurate
geometry related functions. Figure 3c illustrates the
resulting contours obtained through simulated ideal slice
selection.

We also simulated slices with finite thickness, as is
typical in 2D MRI acquisitions. Although real MRI slices
usually have a Gaussian or sinc profile along the slice-
encoding direction, this can be approximated with a rect
function that can be modeled as a slab mesh. Alterna-
tively, one could compute the 3D FT of the slab and con-
volve it with the FT of the desired arbitrary slice profile.
However, if a closed form solution does not exist for the
convolution, it must be approximated by sampling the
FTs, which would introduce approximation errors. Using
CGAL’s Boolean surface operations, we computed the
intersection between a 1-mm-thick slab mesh (Fig. 3a, 3b)
and the cortical meshes to generate a set of 1-mm-thick
sliced meshes for the inner and outer surfaces (Fig. 3d).
The slab mesh was perpendicular to the slice encoding
z-axis and large enough in the x and y directions to
encompass the brain. Because the intersection can discon-
nect sections of the original contiguous cortical mesh, cre-
ating “islands,” the result of the intersection between slab
and cortical mesh is not a single closed sliced mesh but a
set of closed meshes. Triangular faces in the original corti-
cal mesh that are intersected by the top and bottom
planes are converted to polygons with additional edges.
The top and bottom surface of the sliced meshes are non-
triangular polygons that outline the intersection of the top
and bottom slab plane with the cortical mesh. The inner
and outer cortical sliced mesh sets contained a total of
4798 and 3812 faces, respectively.

Using these contours and sliced meshes, we simulated
a 2D MRI acquisition. We used the FT of polygons and
polyhedra to compute the k-space of the infinitesimally
thin slice 2D contours and finite thickness slice meshes,
respectively. The same acquisition parameters were used
for both simulations. As in a real 2D MRI acquisition, we
sampled k-space on a Cartesian grid of matrix sizes 64 �
64, 128 � 128, and 256 � 256 in the kx–ky plane (ie,
only the kz ¼ 0 mm�1 plane was sampled). Because the
largest extent of the contours and sliced meshes was
122.78 mm in the anterior–posterior dimension, the
imaging FOV was set to 1.1 times larger at 135.06 mm to
prevent image domain aliasing. Sampling only the kz ¼ 0
mm�1 plane integrates the finite slice in the z direction,
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which results in slice encoding related partial volume
effects. The same tissue intensity assignments were used
as in the 3D MRI simulation.

For comparison, we also generated a rasterized phan-
tom by sampling the 2D contours in image space. The
imaging parameters were equivalent to the analytical sim-
ulations. The image domain of each contour was sampled
by assigning a value of one or zero for points inside or
outside the contour, respectively. Each rasterized contour
was then scaled by the same tissue intensities used in the
analytical simulations before summation in image space.
We did not perform a finite thickness slice selection ras-
terized simulation, because approximating through slice
integration via image space sampling would introduce
through-slice sampling density as another experimental
parameter.

We used the IDFT to reconstruct images from the ana-
lytical phantom simulations. To compare the ideal slice
and finite slice simulation images, the finite slice recon-

struction was normalized by the slice thickness, since

the intensity is integrated through the slice. No image

reconstruction was required for the rasterized phantom.

Torso Phantom

We simulated the 2D MRI acquisition of a torso with

cardio-respiratory motion to demonstrate the application

of a polyhedral analytical phantom in cardiac MRI simu-

lations. First, triangular meshes for the polyhedral torso

phantom were generated with source geometry and

motion derived from the eXtended Cardiac-Torso (XCAT)

phantom (2,19,20). XCAT is a four-dimensional (4D)

NURBS and subdivision surface–based anthropomorphic

phantom. These NURBS and surfaces model anatomy

from the high-resolution anatomical images of the Visible

Male and Female National Library of Medicine datasets.

XCAT also models cardiac motion based on 100 time

frames over a cardiac cycle of high resolution (0.32 mm

FIG. 3. Triangular meshes comprising a 3D brain analytical polyhedral phantom used in 3D and 2D MRI simulations. The brain is ori-
ented such that the x, y, z axes correspond to the right, anterior, and superior anatomical axes, respectively. (a) Outer cortical mesh
with magnified inset illustrating triangles in the mesh. (b) Inner cortical mesh with overlaid slab mesh used in 2D MRI simulation with

finite slice thickness. Although not shown, the slice plane used to simulate idealized infinitesimally thin slice selection is centered in the
slab mesh. (c) Resulting 2D contours from the intersection of all meshes with the ideal slice plane. (d) Resulting 3D sliced meshes from

the intersection of all meshes with a 1-mm-thick slab mesh. The magnified inset illustrates triangles in the mesh.
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pixel size, 0.4 mm slice thickness) cardiac-gated multide-
tector CT data. Respiratory motion is also modeled based
on respiratory-gated CT data. We used the male XCAT
model for this simulation, extracting 90 sets of NURBS
surfaces corresponding to uniformly spaced time points
fully spanning a cardio-respiratory cycle.

The NURBS surfaces from the XCAT phantom were
converted to triangular meshes using Rhinoceros (Robert
McNeel & Associates, Seattle, Washington, USA), a com-
puter graphics program specialized in manipulating
NURBS. Each object in the XCAT phantom was repre-
sented by at least one mesh. Hollow objects such as the
ventricles of the heart had separate meshes for inner and
outer surfaces. The number of triangular faces per mesh
varied. For instance, the left ventricular inner mesh con-
tained 1322 triangles, whereas the left lung mesh con-
tained 4086 faces. The total number of faces across all
meshes for a single time point varied but was approxi-
mately 23,580. Figure 4a shows the resulting triangular
mesh torso phantom at end-expiration/end-diastole. Con-
version with Rhinoceros produced some self-intersecting
meshes. Because Rhinoceros is proprietary software, it is
unclear why conversion from NURBS to triangular
meshes would in some cases result in self-intersections,
holes, and other abnormalities. The CGAL library con-
tains algorithms that detect self-intersections, and in
using it we created a tool to determine which meshes
were abnormal. We first attempted to repair these
meshes using Polymender, a program that repairs defects
in triangular meshes (21). After the attempted repair, we
reran the self-intersection detection tool. If the repaired
mesh was still self-intersecting, we used Meshlab (http://

meshlab.sourceforge.net), a program that specializes in
manipulating triangular meshes, for a second attempt at
repairing the mesh. Unfortunately, some meshes could
not be repaired by either program and were excluded
from all time points of the phantom.

Some surfaces from XCAT overlapped during respira-
tory and cardiac motion, which caused undesired addition
of intensities in the image domain. These overlapping
regions were subtracted using mesh Boolean operations.
Consequently, meshes that contained other meshes were
“hollowed out.” For instance, the left ventricular epicar-
dial surface mesh derived from XCAT contained the endo-
cardial surface mesh. The epicardial surface mesh, which
describes a solid, was converted to a solid shell that had
an outer and inner surface that followed the endocardial
surface precisely and thus was able to accommodate the
endocardial surface mesh without overlap.

Next, finite thickness slice selection was simulated for
all time points. A 4-mm-thick slab mesh representing the
slice plane positioned at the base of the heart in the
short axis orientation was intersected with all meshes for
each time point (Fig. 4a). We used CGAL functions to
compute this intersection resulting in 4-mm-thick sliced
meshes. This process was repeated for all time points in
the cardio-respiratory cycle. Figure 4b illustrates the
resulting sliced meshes at the extremes of the cardio-
respiratory cycles.

A 2D MRI acquisition was simulated individually for
all time points. The k-space of the sliced meshes were
sampled using a 128 � 128 Cartesian matrix and FOV of
400 mm. The intensities of the polyhedra were chosen to
simulate the relative intensity differences between

FIG. 4. Rendering of triangular mesh torso phantom with intersecting slice plane and resulting sliced meshes for different time points in
the cardio-respiratory cycle. (a) 3D rendering of torso phantom mesh at end-expiration/end-diastole. Magnified inset illustrates triangular

facets. The slice plane is highlighted in red. (b) Resulting sliced meshes after mesh subtraction and intersection operations. Although
meshes were generated for 90 time points throughout the cardio-respiratory cycle, only the extremes of the cardio-respiratory cycle are

illustrated here. Supporting Video S1 illustrates all 90 times points. The dashed lines indicate the relative motion of structures.
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tissues in a bright-blood gradient echo MRI sequence.

Finally, the IDFT was used to reconstruct images for

each time point.

RESULTS

Validation

Accuracy

The FT of a unit cube triangular mesh with 12 faces (18

edges) computed using the proposed implementation

closely matched the gold standard. To estimate differen-

ces between the proposed method and the gold standard,

the magnitude of the error jSgsðkÞ � S3DðkÞj and the nor-

malized magnitude of the error jSgsðkÞ � S3DðkÞj=jSgsðkÞj;
jSgsðkÞj 6¼ 0 were evaluated along the kx-axis. As the

middle row of Figure 5a illustrates, the magnitude of the

error was small (<3 � 10�17 for all sample locations). Sam-

ples with larger coefficient magnitudes seemed correlated

with higher magnitudes of error. The normalized magnitude

of error was also very small (<3 � 10�18) as illustrated in

the bottom row of Figure 5a. The normalized error was

uncorrelated with the magnitude of the coefficient.

Floating Point Precision

The error due to limited floating point precision was small,

suggesting that detailed meshes with many edges can be used

to construct analytical polyhedral phantoms. We computed

the ‘2-norm of the difference between the FT of the polyhe-

dron and gold standard normalized by the ‘2-norm of the

gold standard. Figure 5b shows that the normalized error

increases approximately linearly with the number of edges

with small variations between different displacements of the

cube from the origin. Gray lines in the figure correspond to

different displacements of the cube from the origin. The solid

line with error bars indicates the mean and standard devia-

tion of the error taken across all displacements. For the mesh

with 147,456 edges, the mean normalized error is just 0.8717

� 10�13. These computations were performed on a quad core

Intel Xeon 2.13 Ghz system. A five-run average of the FT of

the 12-face cube mesh (18 edges) over the 64 � 64 � 64 k-

space matrix using one, two, three, and four processor

threads required 7.78, 4.02, 2.84, and 2.32 s or 1.65, 0.85,

0.60, and 0.49 ms per k-space sample per edge, respectively.

Because run times were not recorded for all simulations, the

computational rate corresponding to four threads will be

used to estimate run times for other simulations. This is a rea-

sonable estimate, because the computational cost of the FT of

a polyhedron is linear in the number edges and k-space

samples.

Approximating Smooth Surfaces

We computed the ‘2-norm of the difference between the

FT of the ellipsoidal polyhedron and ideal ellipsoid nor-

malized by the ‘2-norm of the FT of the ideal ellipsoid.

The normalized error decreased quickly with increasing

number of faces. The log of the ‘2-norm of the error over

the entire volume normalized by the ‘2-norm of the gold

standard volume decreased rapidly with increasing face

number as illustrated in Figure 6a. At 79,600 faces

(119,400 edges) the normalized error is only 6.21 � 10�4.

The geometric approximation error is magnitudes larger

than the floating point precision error, suggesting the

number of faces can be increased significantly although

with an increase in computation time. The top row of

FIG. 5. Evaluation of FT error with increasing edges in unit cube–shaped triangular meshes. (a) Sample-wise evaluation of the FT error.
Top row: Plot of the gold standard computed using the product of sincs. Values are given in arbitrary units (A.U.) The real and imaginary
components are displayed separately. Middle row: Graph of magnitude of error versus kx-axis location. Bottom row: Graph of normal-

ized magnitude of error versus kx-axis location, excluding points where the gold standard coefficient magnitude is zero since this would
result in an undefined value. (b) Graph of the normalized ‘2-norm of the error versus the number of faces in the unit cube mesh. Gray

lines indicate different shifts of the cube from the origin. The black line with error bars indicate the mean and standard deviation of the
normalized error taken across all displacements.
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Figure 6b shows the z ¼ 0 slice of the reconstructed FT of
meshes containing 180, 760, 1740, and 79,600 faces; the
corresponding error is indicated by arrows in Figure 6a.
Gibbs ringing due to finite k-space sampling can be
observed in the reconstructed images in Figure 6b top
row. Figure 6c illustrates this artifact in more detail using
an intensity profile corresponding to the dashed line in
Figure 6b. In image space, the error—as expected—is con-
centrated at the edges and is shown in the bottom row of
Figure 6b. In k-space, the largest absolute errors are con-
centrated at the lower frequencies (Fig. 6d, top row).
However, when the absolute value of the error is normal-
ized by the absolute value of the gold standard, higher fre-
quencies tend to have more normalized error (Fig. 6d,
bottom row).

Brain Phantom

3D MRI Simulation

The analytical polyhedral brain phantom was able to
accurately model the gyri of the brain. Although the
surfaces were comprised of triangular facets, they were
small enough to approximate the smooth curves of the

brain at this resolution. Gibbs ringing from finite sam-

pling of k-space can also be observed in the inhomogene-

ity of intensities near the edges, an artifact found in real

MRI images. Figure 7 illustrates representative slices

from the reconstructed volume. The estimated computa-

tional time for the FT of the 3D brain phantom was

approximately 15.96 d. The exponential increase in the

number of samples in the 3D 128 � 128 � 128 sampling

matrix compared with a 2D matrix and the large number

of faces increased computation time substantially.

2D MRI Simulation

The results of the 2D MRI simulations using the 2D ana-

lytical infinitesimally thin and 3D finite slice thickness

analytical phantoms were compared with a 2D rasterized

phantom generated from the contours of the 2D infinites-

imally thin slice phantom (Fig. 8). Differences between

the 2D analytical and the 2D rasterized phantoms were

solely due to aliasing effects of image space sampling in

the rasterized phantom. However, differences between

the 3D finite slice analytical phantom and 2D rasterized

phantom additionally include through-plane intensity

FIG. 6. The behavior of the error incurred when approximating the smooth surface of an ideal ellipsoid using polyhedra with increasing

number of faces. The gold standard is an ideal ellipsoid with a known closed form FT. (a) Log of the ‘2-norm of the error computed over
the entire volume, normalized by the ‘2-norm of the gold standard volume versus the number of faces in the triangular mesh. Arrows

indicate error corresponding to meshes in Figure 2. (b, c) Image space (b) and k-space (c) details for the meshes. The top row of panel
b shows the z ¼ 0 slice of reconstructed 3D volume and image space error. The intensity profiles corresponding to the dotted lines on
the slices are shown in panel c. The bottom row of panel b shows the magnitude of the image space error for the z ¼ 0 slice. (d) Log of

the absolute value of the k-space error corresponding to the kz ¼ 0 plane (top row) and normalized by the absolute value of the gold
standard (bottom row).
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variations that accurately reflect underlying mesh geome-
try. To demonstrate the effects of finite slice thickness,
rasterized phantom must densely sample the through
plane direction to approximate these variations (data not
shown). Using the Cþþ-based MATLAB plugin, the time
required to compute Fourier samples for the finite thick-
ness slice selection 3D brain MRI simulation for the 64 �
64, 128 � 128, and 256 � 256 matrix sizes was 0.43,
1.73, and 6.93 min, respectively. We have omitted the
slice plane and slab intersection operations because they
required a negligible amount of time compared with the
FT computation.

The finite thickness slice selection 2D brain MRI simu-
lation exhibited partial volume effects seen in real 2D
MRI acquisitions. The arrowheads in Figure 8 highlight
partial volume effects at the edges seen only in the finite
thickness simulation. Oblique edges of the mesh caused
changes in intensity along the slice-encoding direction,
which was integrated simulating partial volume effects
in the finite thickness slice selection simulation. Aside
from the edges, regions of low intensity can be observed
in the interior when using finite slices, illustrated by the

full arrows in Figure 8. In the finite thickness simula-
tion, normalizing the integrated intensity by the slice
thickness produces the mean intensity through the slice
plane. Thus, regions that were predominantly low inten-
sity in the slice direction may have lower intensity than
the infinitesimally thin slice simulation, which does not
have intensity variation in the slice-encoding direction.

Differences between the simulations using the raster-
ized phantom and the analytical phantoms were concen-
trated at the edges (Fig. 8c). The discrete image space
samples of the rasterized phantom caused aliasing of
high spatial frequencies of k-space. In the analytical
phantom, regions of sudden intensity changes, such as
edges, were accompanied by Gibb’s ringing and partial
volume effects, both of which are not simulated by the
rasterized phantom. The mean difference between the
rasterized and analytical phantom decreased with matrix
size. The spacing between image space samples of the
rasterized phantom decreases for larger matrices, reduc-
ing high frequency aliasing, thus the DFT of the raster-
ized phantom approximated the FT of the analytical
phantoms more closely. Edge differences were more

FIG. 7. Representative slices of reconstructed volume from 3D MRI simulation using analytical polyhedral brain mesh phantom. Images
for the transverse, coronal, and sagittal planes are shown. From left to right: the inferior, mid-plane, and superior slices are shown for

the transverse plane; the anterior, mid-plane, and posterior slices are shown for the coronal plane; and the left, mid-plane, and right sli-
ces are shown for the sagittal plane.
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pronounced in the finite slice simulation due to partial

volume effects of oblique edges that were not modeled

in the rasterized phantom.
The partial volume effect of finite thickness slice selec-

tion can be easily observed in Figure 8c. The full arrows

illustrate a partial volume effect that was seen in the

finite thickness simulation but was absent in the thin

slice simulation. Because the rasterized phantom was

based on the contours of the thin slice simulation, it did

not exhibit the partial volume effects seen in the finite

thickness slice simulation, and this can be observed in

these difference images.

Torso Phantom

The torso phantom demonstrates an analytical polyhedral

phantom that incorporates motion. Using the Cþþ-based

MATLAB plugin, the FT for each time point required an esti-

mated 4.75 min to compute and thus 7.12 h for all 90 time

points. Again, we have omitted the time required to convert,

slice, and fix the meshes because this was insignificant com-

pared with the FT computation time. Figure 9 shows the

reconstructed simulated acquisition of the phantom at the

extremes of a cardio-respiratory cycle. Supporting Movie S1

shows the reconstructed simulated acquisition for 90 frames

spanning a cardio-respiratory cycle. In-plane motion can be

observed during the contraction of the heart between end-

diastole and end-systole. The blood pool of the pulmonary

artery seems to merge with the right ventricle due to their

close vicinity in end-diastole, but they separate in end-

systole. Additionally, motion of objects through the spatially

fixed slice plane can be observed. The arrowheads in Figure 9

illustrate a portion of a coronary artery that came into the

slice plane at end-inspiration/end-systole that was out of

plane at end-expiration/end-systole. The vessels and bron-

chioles of the lung also illustrate through-plane motion. The

full arrows in Figure 9 illustrate a vessel in the lung that came

into the slice plane at end-expiration/end-systole but was out

of plane at end-inspiration/end-systole.
The torso simulation also demonstrates that an analytical

polyhedral phantom can be constructed using many meshes

with greatly differing sizes. There were 180 meshes in each

set of sliced torso meshes that ranged from the large body

surface mesh to small coronary artery meshes. A rasterized

phantom would cause aliasing of the large high frequency

components of small meshes, which does not occur using

the closed form FT of the analytical polyhedral phantom.

DISCUSSION

Analytical polyhedral phantoms are useful in a number

of areas of MRI development as evidenced by the

FIG. 8. Comparison of a simulated 2D MRI brain acquisition using an analytical polyhedral phantom with infinitesimally thin and finite
thickness slice selection for matrix sizes 64 � 64, 128 � 128, and 256 � 256. All images have the same intensity scaling given by the
color bars on the right. For each set of two columns, the thin and finite thickness slice selections are shown. The red arrowheads and

red arrows highlight partial volume effects at the edges and in the interior, respectively. (a) IDFT reconstruction of ideal and finite slice
simulations. (b) Magnified section corresponding to the region outlined by boundary pixels in row a. The boundary pixels become pro-

portionately smaller as a side effect of increasing matrix size. (c) Magnitude of the difference between a rasterized simulation (not
shown) generated from the infinitesimally thin slice selection contours and the analytical simulations. The rasterized simulation image
matrix is the same size as the k-space matrix used for analytical phantoms. (d) Magnified section corresponding to the region outlined

by boundary pixels in row c, which is the same region outlined in row a and magnified in row b.
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repeated use of the Shepp–Logan phantom and its deriva-
tives based on ellipses or ellipsoids. Realistic 4D (3D space
and one-dimensional time) simulations may be more accu-
rately computed in comparison to using an oversampled (ie,
super-sampled rasterized) phantom. In some cases (eg, simu-
lation of motion), the polyhedral phantoms may be more
computationally efficient than super-sampled rasterized
phantoms. For instance, with the torso phantom, we only
simulated motion between each complete 2D k-space matrix.
However, we can also simulate motion between individual
k-space samples. If motion information is available through-
out the cardio-respiratory cycle, as it is in the XCAT phan-
tom, every k-space sample can be computed using a set of
meshes corresponding to the current sampling time, thereby
modeling motion on an individual k-space sample resolu-
tion. To perform the equivalent motion simulation accu-
rately using a rasterized phantom would require densely
oversampling the entire 3D image space matrix for every k-
space sample, which can be computationally intensive for
4D simulations. Consider such a motion simulation with a
matrix size of 256 � 256 � 256 using the outer cortical mesh
in the 3D brain phantom and assuming two times oversam-
pling factor for the rasterized phantom. The time required to
compute a single k-space for a single motion state corre-
sponds to the time required to compute the FFT of a 512 �
512 � 512 matrix. This required our system approximately
4.44 s and one gigabyte of memory. In contrast, the time
required to compute a single k-space point using the analyti-
cal phantom was 0.40 s and required 14.58 megabytes of
memory. The number of operations required to compute N
k-space points where every point is a different motion state
using the FFT, ignoring oversampling, is OðN2logNÞ,
whereas computing the same points using a polyhedral
phantom is OðNÞ, linear with the number of k-space points.
Note that though the polyhedral FT is significantly more
computationally intensive than the standard FFT, it does not
have the advantage of significant optimization, as does the
FFT via the fftw libraries (27). Further optimization in the
implementation of the phantom, including efficient paralle-
lization, should significantly reduce computation time.

Analytical polyhedral phantoms are also useful for
developing motion compensation techniques. Periodically
rotated overlapping parallel lines with enhanced recon-
struction (PROPELLER) (22) and projection navigators

(23–25) use non-Cartesian k-space trajectories and detect
features shared between images or projections captured at
different motion states. Using a polyhedral phantom, these
features can be realistically modeled, and non-Cartesian k-
space trajectories can be simulated readily. In this study,
we chose not to include examples of non-Cartesian trajec-
tories such as 3D radial because that would introduce
additional experimental factors, such as the choice of non-
Cartesian reconstruction algorithm. However, because the
2D torso phantom simulation samples 3D k-space along an
oblique plane, this trajectory demonstrates that the polyhe-
dral phantom supports sampling of arbitrary k-space fre-
quencies. Polyhedral phantoms may also have uses in CT
simulations through the relationship between the FT and
the Radon transform via the Fourier slice theorem. Arti-
facts from using facets to approximate smooth surfaces can
be alleviated by increasing the number of facets.

Any in vivo configuration that can be described in image
space by altering the triangular mesh can be simulated
using a polyhedral phantom. Hence, nonlinear deformation
of tissues is reduced to relocation of vertices before sam-
pling of Fourier space. Other nonlinear behavior such as
eddy currents can also be simulated with this framework.
Eddy currents, which introduce offsets in intended k-space
sample locations, can be modeled by creating a mismatch
between the k-space coordinates used to sample the phan-
tom and the coordinates used to reconstruct the data. How-
ever, to simulate phase accrual due to flow (as used in
phase contrast imaging) is more difficult, because this
could require subdivision of the physiologically relevant
polyhedral into significantly smaller polyhedrons (as done
in finite element methods). The position of each small ele-
ment within a gradient at a given time point can then be
used to weight the contribution of that element to the final
Fourier transform, with the weight including both magni-
tude and phase, and the phase term being determined by
the first moment of the experienced gradient. Though com-
putationally intense, this approach could allow MR simu-
lation of any finite element model–derived structure.
Although we did not perform experiments, nonuniform
meshes which increase the density of vertices in areas of
high curvature, could more accurately capture the details
of biomedical objects while minimizing computational cost
in comparison to uniform meshes.

FIG. 9. IDFT reconstruction of a simulated 2D MRI acquisition using an analytical polyhedral phantom of the torso at the extremes of
the cardio-respiratory cycle. The dashed line indicates relative motion between different time points. The red arrowheads highlight

through-plane movement of a coronary artery; the red arrows highlight through-plane movement of a vessel in the lungs.
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Limitations

As demonstrated in the 3D brain simulation, computa-

tion time can be an issue for large matrices and meshes
with many edges. Using our basic Cþþ-based plug-in,
calculation of the polyhedral FT for a large number of
faces (�50,000) required on average 0.134 ms per kpoint
per triangular face. Hence, calculation of a 256 � 256 �
256 k-space matrix would take �30 h. Further optimiza-
tion of our Cþþ-based implementation could certainly
increase computation speed, especially if more efficient
multithreading is included. Additionally, the FT of a
polyhedron is highly parallelizable because the computa-
tion of the contribution of each face is completely inde-
pendent and therefore well suited for an optimized
graphics processing unit implementation. Though not
explored in this study, reusing any shared computations
between edge and face contribution calculations may fur-
ther increase performance (26).

Currently, this phantom and the associated framework
are unable to model coil sensitivity profiles. The coil pro-
file produces a modulation in image space and therefore a
convolution of the FT of the phantom with the FT of the
coil sensitivity profile. Though a solution for this problem
has been presented by Guerquin-Kern et al. (5) for a 2D
analytical phantom, to our knowledge, no solution exists
for 3D phantoms that results in a purely analytical expres-
sion. Another limitation of the current implementation of
the polyhedral FT phantom involves tissue intensity gra-
dients. More computationally intensive simulations are
required as the presented equations assume piecewise
constant regions of intensity. Nevertheless, we can
approximate gradients by dividing objects into adjacent
regions with gradually varying intensity. Furthermore, a
simple reformulation of the polyhedral FT can be used to
efficiently calculate these gradients (26).

CONCLUSIONS

In this study, we reviewed the derivation of the FT of a
polygon and polyhedron and described multithreaded
implementation for the later. We evaluated accumulated
error due to limited floating point precision and deter-
mined that it remained small even for polyhedra with
many faces. We determined that the k-space error
of polyhedral approximations of smooth surfaces decreased
rapidly with increasing number of faces. We used polyhe-
dra to construct realistic 3D brain and 4D torso phantoms

and demonstrated the application of these phantoms in
simulated 2D and 3D MRI acquisitions. A MATLAB imple-
mentation of the phantom can be downloaded at http://
www.mathworks.com/matlabcentral/fileexchange/51911-
realistic-analytical-polyhedral-mri-phantoms.

APPENDIX

Abbe Transform Theorem

For a function f that satisfies the Helmhotz equation
r2fþm2f ¼ 0, the N-dimensional volume integral of f

can be expressed as an N-1 dimensional integral of the
divergence of f over the surface enclosing the integra-
tion volume.

ZðNÞ
V

f dN r ¼ � 1

m2

ZðN�1Þ

@V

rf � bn ds [A1]

Proof: Let V be a finite region in a space of N dimensions,

@V is the boundary of V, and ds an infinitesimal element of

@V . Also, let fðrÞ, be a scalar valued function of the position

vector r which satisfies the Helmholtz equation:

r2fþm2f ¼ 0 [A2]

Where m is some constant.
f satisfies the Helmholtz equation, implying f ¼

�r2f=m2. By substitution, the integral of the function f

over the volume V can be expressed as

ZðNÞ
V

f dN r ¼ � 1

m2

ZðNÞ
V

r2f dN r [A3]

Additionally, according to Gauss’s theorem,

ZðNÞ
V

r �A dN r ¼
ZðN�1Þ

@V

A � bn ds [A4]

If we let A ¼ rf and r �A ¼ r2f, the above equa-

tion becomes

ZðNÞ
V

r2f dN r ¼
ZðN�1Þ

@V

rf � bn ds [A5]

Substituting this result into the right side of Equation

[A3] produces the general case of the Abbe transform:

ZðNÞ
V

f dNr ¼ � 1

m2

ZðN�1Þ

@V

rf � bn ds [A6]

Applying the Abbe Transform to the Fourier Transform

To apply the Abbe transform to the Fourier integral, let

fðrÞ ¼ expð�2pik � rÞ be the kernel of the Fourier trans-

form (FT) so the integral on the left of Equation [A1] is

the N dimensional FT of the constant valued volume V.

fðrÞ satisfies the Helmholtz equation (k is a considered

a constant) with m2 ¼ ð2pkÞ2, where k is the magnitude

of the k space vector:

rf ¼ rexpð�2pik � rÞ ¼ �2pi expð�2pik � rÞk [A7]

r2f ¼ r � ½�2pi expð�2pik � rÞk�

¼ �ð2pkÞ2expð�2pik � rÞ
[A8]

r2fþm2f ¼� ð2pkÞ2expð�2pik � rÞ
þ ð2pkÞ2expð�2pik � rÞ ¼ 0:

[A9]

Thus, we can apply the Abbe transform to convert the

N-dimensional Fourier volume integral of a constant
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valued region V to an equivalent N-1 dimensional sur-

face integral.

SðkÞ ¼
ZðNÞ
V

expð�2pk � rÞ dN r

¼ i

2pk2

ZðN�1Þ

@V

expð�2pik � rÞk � bn ds

[A10]

Derivation of the Fourier Transform of a Polygon

First, we will derive the closed form expression for the

FT of a plane polygon. This expression will be used in

the face contribution of the polyhedron to its overall

transform.
In 2D, we wish to find the FT S2DðkÞ of a polygon rðrÞ

whose boundary is composed of E vertices V1 � � �VE ori-

ented in a counterclockwise fashion, where rðrÞ ¼ 1

if reP; else rðrÞ ¼ 0. The Abbe transform expresses the

FT rðrÞ as a line integral along the boundary L where dl

is a small segment of that boundary:

S2DðkÞ ¼
Zð2Þ
P

expð�2pik � rÞ d2r

¼ i

2pk2

Zð1Þ
L

expð�2pik � rÞk � bn dl:

[A11]

Notice that bn, the outward pointing normal to the

edge of the polygon, and r are implicitly functions of the

position on the boundary.
Let Le ¼ rðVeþ1Þ � rðVeÞ be the vector oriented in the

direction of the eth edge, pointing from vertex Ve to Veþ1

with the same length as the edge, where rðVeÞ, rðVeþ1Þ are

the position vectors associated with the Ve and Veþ1 ver-

tices of the polygon, respectively. bte ¼ Le=Le is the unit

vector oriented in the direction of the eth edge. bne is a

unit vector normal to the eth edge and pointing outward

from the interior of the polygon. Additionally, the first

and last vertices are connected, thus VEþ1 ¼ V1 and like-

wise VE ¼ V0.
A polygon’s boundary can be broken up into edges

and the line integral can be expressed as the sum of the

contributions SeðkÞ from each of the edges.

S2DðkÞ ¼
XE

e¼1

SeðkÞ [A12]

SeðkÞ ¼
i

2pk2

Z Le

0

expð�2pik � rÞk � bne dl [A13]

Here, bne has replaced bn and is constant along a given

edge.
A point on the eth edge can be parameterized by set-

ting r ¼ rðVeÞ þ tel, where l is the distance from the ver-

tex Ve, which makes explicit the dependence of the

position r on the boundary to the scalar variable l. The
contribution from the right edge can be rewritten as

SeðkÞ¼
i

2pk2
k �bne exp

�
�2pik �rðVeÞ

�ZLe

0

expð�2pik �bt elÞ dl

[A14]

SeðkÞ¼
1

ð2pkÞ2
k�bne

k�bt e

exp
�
�2pik�rðVeÞ

��
1�expð�2pik�bteLeÞ

�
:

[A15]

Let rðCeÞ ¼ rðVeÞ þ bt eLe=2 to rewrite Se in terms of
phasors related to the midpoint of the edge.

SeðkÞ ¼
1

ð2pkÞ2
k � bne

k �bt e

exp �2pik � rðCeÞ �
bt eLe

2

 ! !
�

1� expð�2pik �bt eLeÞ
� [A16]

SeðkÞ ¼
1

ð2pkÞ2
k � bne

k � bte

exp
�
�2pik � rðCeÞ

��
expðpik �bt eLeÞ

� expð�pik � bt eLeÞ
�

[A17]

SeðkÞ ¼
i

2pk2
Lek � bne

sinðpk �bt eLeÞ
pk � bteLe

exp
�
�2pik � rðCeÞ

�
[A18]

Summing over all edge contributions SeðkÞ, we
obtain the final form for the expression for the FT of a
polygon:

S2DðkÞ¼
i

2pk2

XE

e¼1

Lek �bne
sinðpk �bteLeÞ

pk �bteLe

exp
�
�2pik �rðCeÞ

�
; k 6¼0:

[A19]

The above expression is finite as long as k 6¼ 0 (ie, the
center of k-space). The value at k ¼ 0 is equal to the area
of the polygon. The area of a 2D planar polygon in terms
of its vertices is

S2Dðk ¼ 0Þ ¼ 1

2

����XE

e¼1

rðVeÞ
x rðVeþ1Þ

y � rðVeþ1Þ
x rðVeÞ

y

����: [A20]

Derivation of the Fourier Transform of a Polyhedron

We wish to find an analytical solution for the FT of a
polyhedron

SðkÞ ¼
ZZZ

rðrÞexpð�2pik � rÞ d3r [A21]

where rðrÞ ¼ 1 if reV ; else rðrÞ ¼ 0.
Using the Abbe transform, the volume integral in the

FT of a polyhedron can be expressed as an integral over
the surface @V .
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S3DðkÞ ¼
ZZ3

V

Z
expð�2pk � rÞ d3r

¼ i

2pk2
�
ð2Þ

@V
expð�2pik � rÞk � bn ds

[A22]

We wish to express the surface integral as the sum of
the contributions of the faces of the polyhedron Sf ðkÞ. Let
r ¼ r0f þ rf , where rf is a vector in the plane of the face
of Pf whose origin is at r0f and r0f is the position vector
of an arbitrarily chosen point 0f in the face Pf . Addition-
ally, let bN f be the outward normal of the fth face and F be
the total number of faces in the polyhedron.

Similar to the FT of a polygon, we can express the FT
of a polyhedron as the sum of the contributions from
each of its individual faces.

S3DðkÞ ¼
XF

f¼1

Sf ðkÞ [A23]

Sf ðkÞ ¼
i

2p

k � bN f

k2
expð�2pik � r0f ÞIf ðkÞ [A24]

If ðkÞ ¼ �
ð2Þ

Pf

expð�2pik � rf Þ d2r [A25]

The integral If ðkÞ over the surface Pf of the fth polygo-
nal face can be evaluated using the formula for the FT of
a polygon if kf is substituted for k, the projection of k
onto the plane Pf or the component of . that exists
purely in the plane of Pf . Because k � rf ¼ ðkf þ kf perpÞ
�rf ¼ kf � rf ; If ðkf Þ ¼ If ðkÞ and kf exists purely in the
plane of the face (ie, the plane of integration), we can
apply the formula for the FT of a polygon. Additionally,
let Ef be the number of edges of the fth face, let rðCfeÞ be
the position vector of the midpoint of the eth edge on the
fth face, let bt fe be the unit vector in the direction of the
eth edge of the fth face, let Lfe be the length of the eth

edge of the fth face, and let bnfe be the outward normal to
the eth edge of the fth face in the plane of the face.

If ðkÞ ¼ If ðkf Þ

¼ i

2pkf
2

XEf

e¼1

Lfekf � bnfe

sinðpikf �bt feLfeÞ
kf �bt fe

exp
�
�2pikf � rf

ðCfeÞ
�

[A26]

This expression has a singularity when kf ¼ 0. In this
case, If is the area of the fth face, Pf . The following
equalities can be used to rewrite the above equation in
terms of k and rðCeÞ in the global coordinate system:
kf

2 ¼ k2 � ðk � bN f Þ2, kf � bnfe ¼ k � bnfe, kf �bt fe ¼ k �bt fe,
kf � rf

ðCfeÞ ¼ k � rf
ðCfeÞ, and rf

ðCfeÞ ¼ rðCeÞ � r0f .

If ðkÞ ¼
i

2p½k2 � ðk � bN f Þ2�

XEf

e¼1

Lfek � bnfe

sinðpik �bt feLfeÞ
k � bt fe

� exp
�
�2pik � rðCfeÞ

�
[A27]

The singularity at kf ¼ 0 becomes a singularity at
k ¼ k bN f because k perpendicular to the fth face implies
kf ¼ 0. In this case, If ðk bN f Þ is the surface area Pf of the
polygonal face f given in the global coordinate system as

If ðk ¼ k bN f Þ ¼ Pf

¼ 1

2

���� bN f �
XE

e¼1

frðVfeÞ � rðVfeþ1Þg
���� [A28]

Substituting If into Sf produces

Sf ðk 6¼ 0; k bN f Þ ¼

� 1

ð2pkÞ2
k � bN f

k2 � ðk � bN f Þ2
XEf

e¼1

Lfek � bnfe

sinðpk � bt feLfeÞ
pk �bt feLfe

�exp
�
�2pik � rðCfeÞ

�
Sf ðk ¼ k bN f Þ ¼

i

2p

k � bN f

k2
expð�2pik � r0f ÞPf

[A29]

where r0f can be any arbitrary point in the plane of the
face (eg, it can be set to the first vertex rðVf 1Þ).

Thus, summing over the appropriate contribution of
each face, factoring out �1=ð2pkÞ2 from Sf to produce S�f
and substituting rðVf 1Þ for r0f , the final simplified expres-
sion for the FT of a polyhedron is:

S3DðkÞ ¼
� 1

ð2pkÞ2
XF

f¼1

S�f ðkÞ; k 6¼ 0

V ; k ¼ 0

8>>><>>>:
S�f ðk 6¼ k bN f Þ ¼

k � bN f

k2 � ðk � bN f Þ2
XEf

e¼1

Lfek � bnfe

sinðpk �bt feLfeÞ
pk � bt feLfe

�exp
�
�2pik � rðCfeÞ

�
S�f ðk ¼ k bN f Þ ¼ �2pik � bN f exp

�
�2pik � rðVf 1Þ

�
Pf

Pf ¼
1

2

���� bN f �
XEf

e¼1

frðVfeÞ � rðVfeþ1Þg
����

[A30]

where V is the volume of a polyhedron (14), which is
given in terms of its vertices as

S3Dðk ¼ 0Þ ¼ V

¼ 1

6

�����XF

f¼1

ðrVf 1 � bN f Þ
���� bN f �

�XEf

e¼1

rðVfeÞ � rðVfeþ1Þ
����������

[A31]
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.
Supporting Movie S1. Reconstruction of a simulated acquisition of the
torso phantom over 90 points spanning a cardio-respiratory cycle. Jitter
occurring at the body surface is due to the thin slice plane and large polyg-
onal faces in the body surface mesh. This jitter can be reduced by increas-
ing the number of faces during the body surface NURBs to mesh
conversion or increasing the thickness of the slice plane. In contrast, jitter
at the lungs is due to differences between repaired self-intersecting
meshes produced by Polymender and Meshlab. Removing this jitter
requires a NURBS to triangular mesh conversion that does not produce
self-intersections or a tool that can correct meshes for all time frames with
minimal differences.
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