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A B S T R A C T

Background: Genetic risk scores (GRSs) have been associated with CHD events and coronary artery calcium
(CAC). We sought to evaluate the ability of a GRS to improve CAC as a screening test.
Methods: Using the results of the most recent genome-wide association studies, we calculated a GRS in 6660
individuals from the Multi-Ethnic Study of Atherosclerosis and used it to determine the optimal age for an
individual to undergo CAC screening.
Results: This 157-SNP GRS was predictive of non-zero CAC in individuals aged 44–54 and improved the positive
yield of CAC as a screening test in this age group. The GRS was predictive of CAC in the entire multi-ethnic
cohort and in each self-identified ethnic group (European American, Chinese American, African American, and
Hispanic American) assessed individually. Given a specified target yield rate of non-zero CAC, an equation was
derived to calculate an individual's optimal age to undergo CAC screening. In addition, a “direct-to-consumer”
GRS consisting of only risk SNPs or their proxies that are directly genotyped on the 23andMe v5 chip (102-SNP
GRS) was assessed in the European American population and was predictive of non-zero CAC in younger in-
dividuals.
Conclusion: A GRS is associated with non-zero CAC in a multi-ethnic cohort and can be used to calculate the age
of a person's first calcium scan, given a target threshold for CAC discovery. Furthermore, an inexpensive and
widely available “direct-to-consumer” GRS was found to be a viable option to calculate the optimal age for CAC
screening.

1. Introduction

Coronary heart disease (CHD), primarily caused by atherosclerosis,
affects 15.5 million Americans, and caused approximately 1 of every 7
deaths in the United States in 2013.1 Because CHD is a common, mul-
tigenic disorder, genome-wide association studies (GWAS) have been
conducted to identify single nucleotide polymorphisms (SNPs) asso-
ciated with disease.2–10 These SNPs individually confer small additional
risk of disease but can be combined into a single genetic risk score
(GRS), summarizing a person's overall genetic predisposition for
CHD.11–13 Over the past ten years, several GRSs derived from GWAS for

CHD have been associated with the incidence of CHD events.11–17 Mega
et al. found that in primary prevention trials, the number needed to
treat with statins to prevent one CHD event was more than double
among those of low genetic risk compared with high risk individuals.16

GRS for CHD and its clinical risk factors have also been associated
with coronary artery calcium (CAC) in asymptomatic in-
dividuals.14,17–19 However, these findings have been limited to cohorts
of European ancestry. Additionally, recent analyses using the UK Bio-
bank and CARDIoGRAMplusC4D cohorts identified 64 novel genomic
loci associated with CHD, bringing the total number of known CHD loci
to 161.10
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CAC is a phenotypic risk factor that can be measured non-invasively
and is correlated with total atherosclerotic burden.20–22 Computed to-
mography (CT)-based CAC scoring is an established method for asses-
sing subclinical atherosclerosis:23 increased CAC is associated with a
higher incidence of CHD events,24–27 whereas a CAC score of 0 is linked
with very low risk.28,29 CAC has also been shown to improve risk
classification when added to traditional risk factors.30

Current guidelines from the American College of Cardiology and the
American Heart Association provide CAC with a Class IIa re-
commendation in individuals deemed of intermediate (7.5–20%) 10-
year risk according to traditional measures such as the Framingham
Risk Score (FRS) or Atherosclerotic Cardiovascular Disease (ASCVD)
risk score.31 Yeboah et al. found that, when combined with FRS, CAC
was the best predictor of CHD events in individuals of intermediate
(5–20%) risk, compared with four other non-traditional risk markers
and family history of CHD.32 Although CAC increases with age,33 CAC
remains highly predictive of CHD events even after stratification by 10-
year age group, “suggesting that once CAC is known chronologic age
has less importance”.34 Moreover, absolute CAC scores predict CHD
events better than scores adjusted for age and sex,35 and CAC presence
in younger individuals has been associated with a 5-fold increase in
CHD event risk.36

Additionally, establishing when a person should begin preventative
statin therapy remains a significant clinical question. In a recent study
using coronary CT angiography (CCTA), one-half of patients with non-
obstructive CAD and one-third with obstructive CAD did not qualify for
statin therapy according to the 2013 ACC/AHA guidelines.37 These
guidelines state that additional risk factors, including CAC, can be
considered when a traditional “risk-based treatment decision is un-
certain”.38 When CAC is considered within statin eligibility group, CHD
event prediction improves.39

These results indicate that CAC is a valuable screening test for de-
termining CHD risk and provides improved insight into an individual's
need for preventive statin therapy; however, because coronary artery
calcification progresses with age, scanning all asymptomatic young
individuals will result in very low positive detection, and scanning
older individuals will result in CAC detection greater than 45% after
age 55. To be economically valuable, a screening test must have a
reasonably high prevalence of positive detection coupled with an ap-
propriate response,40 in this case, onset of statin therapy. This led us to
ask: is it possible to use a GRS derived from SNPs associated with CHD
to increase the positive yield of CAC as a screening test?

The goal of this study was to determine the optimal age for an in-
dividual to undergo CAC screening based on a GRS derived from pre-
viously identified CHD risk loci. The evaluation was in a multi-ethnic
cohort, and further analyses were done within each ethnic group.

2. Methods

2.1. Multi-Ethnic Study of Atherosclerosis

The Multi-Ethnic Study of Atherosclerosis (MESA) was designed to
study the characteristics of subclinical atherosclerosis in a diverse co-
hort of asymptomatic individuals. Its details have been previously
published.27,41,42 In short, participants were enrolled and initially ex-
amined at one of six participating clinics throughout the United States
between July 2000 and July 2002. Participants were between the ages
of 44 and 84 and free from clinical cardiovascular disease at the first
examination. Data from two ancillary studies, the MESA Family Study,
which enrolled subjects between May 2004 and May 2007, and MESA
Air were also included in the analysis. The study was approved by the
institutional review committee at each participating institution, and all
subjects gave informed consent.

2.2. Genotyping

Genotype information for 8296 participants was obtained from the
NHLBI MESA SNP Health Association Resource (SHARe) on dbGaP
(Study Accession: phs000420.v6.p3). Participants were genotyped
using the Affymetrix Genome-Wide Human SNP 6.0. Samples with <
95% call rate or observed heterozygosity greater than 3 standard de-
viations from the mean were removed, and the data was filtered to
remove related individuals based on self-identified familial relation-
ships, leaving 6660 participants with genotype data and a CAC score. At
the variant level, SNPs with minor allele frequency < 0.01 or call
rate < 95% were removed. To obtain most of the reported coronary
artery disease (CAD) risk loci10, the genotype data was further imputed
using the SNPs that passed quality control. The imputation was con-
ducted via the Michigan Imputation Server v1.0.2, phased with Sha-
peIT, and imputed with IMPUTE2, using the 1000 genomes phase 3
reference panel and genome build hg19.43

2.3. Calculation of the GRS

A GRS was calculated for each individual using the SNPs associated
with CHD in the recent meta-analysis.10 4 SNPs were excluded because
they were not in the imputed data set (rs7797644) or had low im-
putation quality (R2 < 0.6) (rs116843064, rs6511720, rs7412),
leaving 157 SNPs. The GRS for each individual was calculated by
summing the number of risk alleles (Xi) multiplied by the previously
reported odds ratio for CHD for each of the 157 SNPs (equation (1)).

GRS X ORlog( )
i

i i

157

=
(1)

2.4. CAC assessment

CAC assessment in MESA was performed as per Carr et al.44 Briefly,
CAC was measured using electron-beam CT at three sites and a four-
detector row helical CT at the other three sites. Prospective electro-
cardiographic triggering was used at all sites. Each individual received
two consecutive scans, and the results were averaged. All scans were
assessed at a central CT reading center, and CAC was quantified using
the Agatston method.23

2.5. Statistical analysis

6660 individuals with genetic information and a CAC score were
included in the analysis. All analyses were done using R v3.4.0 (R
Foundation for Statistical Computing, Vienna, Austria). As per Mega
et al.,16 participants were divided into low (GRS quintile 1), inter-
mediate (GRS quintiles 2–4), and high (GRS quintile 5) genetic risk
categories. Traditional risk factors were assessed for individuals aged
44–54 and compared between the high and low risk groups using the
student t-test for continuous variables and the X2 test for categorical
variables. The entire cohort was then separated into 10-year age groups
(44–54, 55–64, 65–74, 75–84), and the rate of calcium presence, de-
fined as a non-zero CAC score, was determined for each genetic risk
category. Because current guidelines suggest CAC measurement in in-
dividuals of intermediate (7.5–20%) risk and initiation of statin therapy
in individuals of high (> 20%) risk, the utility of the GRS was also
assessed specifically in individuals of all ages who were identified as
low (< 7.5%) risk according to the FRS.

In the youngest age group (44–54), the odds ratio for non-zero CAC
was calculated within each quintile of genetic risk in a univariate model
and in a multivariate model with age and sex included as covariates. A
normalized GRS was then calculated by taking an individual's raw GRS,
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subtracting the total population mean, and normalizing by the standard
deviation of the total population (equation (2)):

GRS GRS µ
n = (2)

where GRS is an individual's raw GRS calculated from equation (1), µ is
the mean GRS of the total population, and is the total population
standard deviation. Normalized GRS was assessed as a continuous
variable in the entire cohort for its association with non-zero CAC in a
multivariate model with age and sex included as covariates. Using the
model and a target discovery rate of non-zero CAC in the population, a
simple equation was derived to calculate the appropriate age for a
person to receive their first calcium scan, given the individual's age-
independent risk factors (sex and GRS).

After analysis of overall genetic predisposition, we also sought to
determine if any specific SNPs were driving the predictive power of the
GRS. Therefore, we assessed the predictive ability of each GRS SNP
individually using GCTA software.45,46 Analysis was done within each
ethnic group separately and using a mixed linear model with the ge-
netic relatedness matrix to account for any remaining population sub-
structure.

The advent of direct-to-consumer personal genotyping services,
such as 23andMe, has caused widespread interest in genetic tests that
use chips which include many SNPs in the GRS developed here.
However, imputing the remaining SNPs not genotyped directly requires
substantial time and data storage space, limiting usefulness for con-
sumers. 23andMe represents one of the largest profiled populations for
personal genotyping; therefore, we assessed the predictive ability of
two GRSs derived solely from SNPs genotyped directly on the chip
currently used by 23andMe (23andMe v5, Illumina Infinium Global
Screening Array). The first of these GRSs consisted of CHD risk SNPs
genotyped directly on 23andMe v5 (n = 37) in addition to CHD risk
SNP proxies (n = 65) genotyped directly on 23andMe v5, resulting in a
102-SNP “direct-to-consumer” GRS. For each CHD risk SNP not geno-
typed on 23andMe v5, the LDproxy module in LDlink47 was used to
search for proxy SNPs in the 5 European populations represented in the
1000 genomes phase 3 v5 reference set. If a queried risk SNP had a
proxy in high linkage disequilibrium (R2 > 0.8) and that proxy was
genotyped directly on 23andMe v5, the proxy was included in the GRS.
Because European populations were referenced to search for proxies,
GRS effectiveness was analyzed in the European American population.
The second of these GRSs included only the 37 SNPs genotyped directly
on 23andMe v5 and was analyzed in all ethnic populations.

3. Results

Genotype information was retrieved for 6660 individuals that also
had reported CAC scores. A GRS was calculated for each individual by
weighting the genotype at each SNP by the associated odds ratio de-
termined via previous CHD GWAS. All SNPs included in the GRS were
in the original data set (n = 30) or imputed (n = 127) with an
R2 > 0.6 (Supplementary Table 1). The mean GRS for the population
was 3.735 ± 0.187.

Baseline characteristics of traditional risk factors were assessed for
the high GRS group (quintile 5), intermediate risk group (quintiles
2–4), and low risk group (quintile 1) (Table 1) in the youngest age
group (44–54 years). All traditional risk factors except for BMI, systolic
blood pressure, total cholesterol, and LDL cholesterol did not differ
significantly by genetic risk group. The high GRS group had a lower
mean BMI (27.3 vs 29.9 kg/m2, p = 2.9 × 10−10) and systolic blood
pressure (114.7 vs 118.2 mmHg, p = 0.007) and higher total choles-
terol (197.5 vs 190.5 mg/dl, p = 0.010) and LDL cholesterol (121.2 vs
115.6 mg/dl, p = 0.018) than the low GRS group.

For the entire cohort (all ages), CAC presence increased between
low (40.8%), intermediate (51.1%), and high (58.4%) GRS score
(Table 2). This trend was also observed among each 10-year age group
(44–54, 55–64, 65–74, 75–84) with a lower overall prevalence but
stronger genetic effect in the younger age groups. In the youngest age
group (44–54), CAC presence in the high GRS group was approximately
double that of the low GRS group (31.6% vs 15.8%) while the absolute
percentage increase in ages 75–84 was 13.8% (72.4% in low risk sub-
jects vs 86.2% in high risk subjects).

6166 individuals of all ages had complete data for standard clinical
risk assessment by the FRS. Of these individuals, 1985 were deemed to
be of low (< 7.5% 10-year CHD event) risk by the FRS. Among the low
risk individuals, CAC presence in the high GRS group was nearly double
that of the low GRS group (32.8% vs 16.5%) (Table 3).

Among individuals aged 44–54, the odds ratio for CAC generally
increased with increasing GRS quintile in a univariate model and in a
multivariate model adjusted for age and sex (Fig. 1) and was statisti-
cally significant in both models for quintiles 2–5 (compared with
quintile 1). To ensure these findings were not being driven by any single
ethnic group, the GRS was assessed in each ethnic group separately. The
GRS was predictive of CAC in each ethnic group (Appendix 2).

When the GRS was treated as a continuous variable, the odds ratio
for CAC was 1.37 (1.29–1.45) per standard deviation from the popu-
lation mean in the multivariate model adjusted for age and sex. Fig. 2
illustrates the change in probability of CAC as a function of age at in-
creasing GRS values.

Using the multivariate model, the age of a first scan can be calcu-
lated, given a particular yield rate of CAC, according to the following
equation:

( )
Age

GRS sln 0.313 1.05 6.65

0.0994scan

r
r n1=

+
(3)

where r is the target rate of non-zero CAC detected in the population,
GRSn is the individual's normalized genetic risk score, and s is the pa-
tient's sex (0 for females, 1 for males). If we screen individuals with an
anticipated CAC rate of 25% for males, this equation reduces to:

Age GRS45.3 3.15scan Men n[ ] = (4)

and therefore, for a male with a GRS 2 standard deviations above the
mean, the model suggests an age of 39.0 for a first scan, whereas for a
male with a GRS 2 standard deviations below the mean, the model
suggests an age of 51.6. However, it should be noted that the model was
created with data from individuals aged 44–84. At a non-zero CAC rate
of 25% for females, the equation reduces to:

Age GRS55.8 3.15scan Women n[ ] = (5)

and the model predicts an age of first scan at 49.5 years for a female 2
standard deviations above the population mean and 62.1 years for a
female 2 standard deviations below.

To assess the predictive ability of each GRS SNP individually, we
analyzed each ethnic group separately and used a mixed linear model to
account for remaining population substructure. In the European
American, Chinese American, and Hispanic American populations, no
SNPs were significant predictors (p < 0.05) of non-zero CAC after false
discover rate (FDR) correction.48 In the African American population,
one SNP, rs1887318 located on chromosome 10, was a significant
predictor of non-zero CAC after FDR correction. Q-q plots show ob-
served p-values that follow a uniform distribution (Fig. 3).

Given the rising popularity of direct-to-consumer genotyping ser-
vices, we sought to evaluate the utility of a commercially available test
without imputing additional SNPs. Because 23andMe is one of the
largest companies to offer this service, we evaluated the effectiveness of
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a GRS derived solely from SNPs genotyped directly on the 23andMe v5
chip. This 102-SNP GRS included 37 SNPs from our original GRS and 65
proxy SNPs that were derived as per the Methods section (Appendix 1).
This 102-SNP GRS had a mean of 2.91 ± 0.157 in the European po-
pulation and can be calculated using a simple python tool (https://
github.com/LaurenSeverance/GRS). In the youngest age group, in-
dividuals in quintiles 2–5 had significantly increased risk (p < 0.05)
when compared with quintile 1, and in all ages, individuals in quintiles
3–5 had significantly increased risk (Fig. 4).

With the 102-SNP GRS treated as a continuous variable, an age of
scan equation was derived for the European population. At a 25% non-
zero CAC rate for males, the equation reduces to:

Age GRS42.9 2.86scan Men n[ ] = (6)

and for females it reduces to:

Age GRS55.2 2.86scan Women n[ ] = (7)

where GRSn is the individual's 102-SNP GRS normalized to the
European population mean and standard deviation. When proxy SNPs
were excluded and a 37-SNP GRS based only on CHD risk SNPs mea-
sured directly on the v5 chip was assessed among ages 44–54 in each
ethnic population individually, it was not predictive of CAC in any
population.

4. Discussion

Current guidelines provide CAC with a class IIa recommendation for
cardiovascular risk assessment in asymptomatic individuals of inter-
mediate risk, and it is clear that CAC provides valuable insight of CHD
risk. However, screening all younger individuals will result in a low
CAC discovery rate and consequently low cost effectiveness. Therefore,
we sought to evaluate a GRS derived from SNPs that predict CHD
outcomes for its ability to improve the positive yield of CAC as a
screening test in a group of higher risk individuals. In this multi-ethnic
cohort of clinically asymptomatic individuals, subjects with a higher
GRS had an increased rate of non-zero CAC. The GRS was predictive of
calcium despite the fact that SNPs were initially derived from GWAS for
CHD events. These findings are in agreement with previous ana-
lyses14,17–19 performed in cohorts of strictly European ancestry and
which did not include the novel loci discovered during the most recent
meta-analysis of SNPs associated with CHD.

Our findings are consistent among all four 10-year age groups with
the strongest effect in the youngest group (44–54). In this group, we
found a significant increase in risk for non-zero CAC in GRS quintiles

Table 1
Traditional risk factors for individuals ages 44–54 in the high, intermediate, and low GRS groups. Mean and standard deviation are presented for continuous
variables. Categorical variables are presented as percentages.

High Genetic Risk (Q5) Int Genetic Risk (Q2-Q4) Low Genetic Risk (Q1) p (High vs Low)

Age (years) 49.9 ± 3.0 49.8 ± 2.9 49.9 ± 2.7 0.86
Male (%) 46.8 47.1 47.2 0.97
BMI (kg/m2) 27.3 ± 5.6 28.9 ± 6.0 29.9 ± 5.8 2.9 × 10−10

Smoking (%) 16.4 19.5 19.9 0.26
Diabetes mellitus (%) 7.2 7.9 10.7 0.13
Systolic blood pressure (mmHg) 114.7 ± 17.7 117.0 ± 17.0 118.2 ± 17.7 0.007
Antihypertensive therapy (%) 17.9 20.9 23.1 0.093
Total cholesterol (mg/dl) 197.5 ± 36.8 194.6 ± 35.5 190.5 ± 36.8 0.010
LDL cholesterol (mg/dl) 121.2 ± 30.6 119.2 ± 30.2 115.6 ± 33.1 0.018
HDL cholesterol (mg/dl) 49.1 ± 13.8 49.9 ± 14.3 49.1 ± 13.5 0.996
Triglycerides (mg/dl) 136.7 ± 89.2 129.2 ± 95.9 131.3 ± 100.9 0.43
Statin (%) 7.0 6.8 4.8 0.27

Q5, quintile 5; BMI, body mass index, LDL, low density lipoprotein, HDL, high density lipoprotein.

Table 2
Prevalence of non-zero CAC within each genetic risk group, stratified by 10-year age category.

Age All 44–54 55–64 65–74 75–84

Total people 6660 1827 1908 1975 935
Total CAC > 0 3365 446 867 1284 762
Low GRS: CAC > 0% 544/1332 (40.8%) 59/377 (15.8%) 131/385 (34.0%) 219/383 (57.2%) 134/185 (72.4%)
Int GRS: CAC > 0% 2043/3996 (51.1%) 269/1076 (25.0%) 517/1134 (45.6%) 788/1215 (64.9%) 465/561 (82.9%)
High GRS: CAC > 0% 778/1332 (58.4%) 118/374 (31.6%) 219/389 (56.3%) 277/377 (73.5%) 163/189 (86.2%)
Total CAC > 0 rate 50.5% 24.4% 45.4% 65.0% 81.5%
High/Low 1.43 2.02 1.65 1.28 1.19

CAC, coronary artery calcium; GRS, genetic risk score.

Table 3
Prevalence of non-zero CAC among individuals of all ages classi-
fied as low (< 7.5% 10-year) risk according to the Framingham
Risk Score.

FRS < 7.5%

Total people 1985
Total CAC > 0 501
Low GRS: CAC > 0% 65/393 (16.5%)
Int GRS: CAC > 0% 301/1192 (25.6%)
High GRS: CAC > 0% 131/400 (32.8%)
Total CAC > 0 rate 25.2%
High/Low 1.98

CAC, coronary artery calcium; GRS, genetic risk score.
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2–5 when compared with quintile 1. We also demonstrate that the GRS
is effective in stratifying individuals of all ages who are classified as low
risk according to the FRS. According to current guidelines, CAC scan-
ning is not recommended in these individuals, yet the rate of non-zero
CAC is nearly double in the high GRS group compared with the low GRS
group. While this finding highlights the utility of the GRS beyond tra-
ditional risk scoring, the optimal integration of GRS with traditional
risk factors, other than age, that change over time remains an open
clinical question.

When the GRS was analyzed as a continuous variable, we found that
a 45 year old male with a GRS 2 standard deviations above the popu-
lation mean has the same probability of CAC as a 57 year old male with
a GRS 2 standard deviations below the mean. This suggests that con-
sideration of a GRS could increase the positive yield of CAC screening
by identifying individuals of high genetic risk – in fact, the GRS could
be used to define the age at which the probability of non-zero CAC
crosses a predetermined threshold.

Thus, we used the model to derive an equation for an individual to
receive a first CAC scan, given a target non-zero CAC discovery rate and
the individual's age-independent risk factors of GRS and sex. Given this

equation, an individual with a GRS 2 standard deviations below the
population mean has a recommended age of first scan approximately 12
and a half years later than an individual with a GRS 2 standard de-
viations above (51.6 years vs 39.0 years for males and 62.1 years vs
49.5 years for females). The GRS could also be used clinically to en-
courage early statin therapy in younger individuals with high genetic
predisposition for disease and a non-zero CAC score.

Although the GRS was derived from SNPs discovered primarily in
populations of European ancestry and is most effective in stratifying the
European American population, it was predictive of CAC in this multi-
ethnic cohort. It remained predictive even when assessed in each ethnic
group separately. However, further studies are needed to validate these
findings in younger individuals, and GWAS among populations of more
diverse ancestry may improve GRS utility.

When we assessed the predictive ability of each GRS SNP in-
dividually, we found that in all populations except the African
American population, no individual SNPs were significant predictors of
non-zero CAC. However, when the effects of these SNPs were combined
into a single GRS, the result was predictive. This finding is consistent
with current hypotheses that individual variants confer very low risk,

Fig. 1. Odds ratio for risk of non-zero CAC by GRS quintile in individuals ages 44–54. (a) Univariate model. (b) Multivariate model adjusted for age and sex.

Fig. 2. Probability of coronary artery cal-
cium (CAC) presence as a function of age,
presented for increasing normalized genetic
risk score (GRS) values. Shaded area in-
dicates 95% confidence interval. Probability
curves left of the dotted line represent pre-
dictions outside the age range from which
the regression was performed. Solid line re-
presents a 25% rate of positive CAC.
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but their effects are additive and can be combined into a measure of
cumulative genetic risk. The only SNP to show significant association
with non-zero CAC was rs1887318 near the KIA1462 locus on chro-
mosome 10 in the African American population. To our knowledge, this
SNP has not previously been associated with CHD or CAC in African
Americans, including in a meta-analysis of African American cohorts by
Wojczynski et al. which evaluated risk of CAC among SNPs previously
associated with CHD in European American cohorts.49

With the rising popularity of personal genotyping services, many
individuals can now access the raw data needed to calculate their own
GRS but are limited by the imputation. Therefore, we asked, can a GRS
derived only from SNPs directly genotyped on the 23andMe v5 chip be
used to determine an individual's risk of non-zero CAC? This 102-SNP
“direct-to-consumer” GRS was predictive of non-zero CAC in the
European American population and can be calculated directly from
23andMe v5 raw data with a simple formula. However, when the GRS
was reduced to 37 SNPs directly genotyped on the chip and no proxies,
it was not predictive of CAC in younger individuals of any ethnic group.

This analysis had several limitations. First, the youngest age group
was limited to ages 44–54, and approximately one quarter of the group
already had clinically detectable calcium. Additional studies are ne-
cessary to validate this work in even younger individuals and to further

understand the age at which calcium growth becomes clinically de-
tectable, particularly in high-risk individuals. Second, although CAC is
a well-established, non-invasive potential screening tool for subclinical
atherosclerosis, it does not measure soft plaques, which may be more
prevalent in this younger population. Finally, analyses were stratified
by self-identified ethnicity.

5. Conclusion

In summary, we have shown that a GRS derived from SNPs dis-
covered via GWAS to be associated with CHD events identifies younger
individuals at an increased risk of non-zero CAC. The GRS is also ef-
fective in stratifying those who are categorized as low risk according to
the FRS and who would not be recommended for a CAC scan under
current guidelines. From this group, the GRS identifies individuals who
are at an increased risk of non-zero CAC. For a CAC screening program
with a target positive scan discovery rate, the GRS can be used to cal-
culate an appropriate age for an individual to receive their first scan.
The GRS varies by ethnic group due to the difference in risk SNP pre-
valence within each ethnic group. While the GRS works well for the
European American population, small sample size and lower prevalence
of risk SNPs in the other populations indicate that further studies

Fig. 3. Q-q plots comparing the observed p-value for each SNP with expected p-values.
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relating genetic variants to both CHD events and CAC are needed within
these groups. While individual SNPs are not useful in stratifying the
cohort, their cumulative effect, summarized in the GRS, is predictive of
CAC, and direct-to-consumer genotyping results can be used to calcu-
late a GRS with significant predictive utility.
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